
www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 3 Page 856-859, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 1

 ISSN 2395-1621

Dynamic Slot Allocation In Hadoop

#1
Miss.NeetaMohite,

#2
Miss.ShubhangiMahandule,

#3
Prof.V.N.Nandgaonkar

1mahanduleshubhangi@gmail.com

2Neeta.mohite1@gmail.com
3Vikas.nandgaonkar@gmail.com

#123

B.E. Computer Engineering, Universal College of Engineering ,Sasewadi (Pune)

ABSTRACT

ARTICLE INFO

In recent years , advent of new technologies , devices, smart phone and communication

like social media sites, the amount of data produced is growing rapidely every year. To

hareness the power of big data , you would require an infrastructure that can manage

and process huge volumes of structured and unstructured data in real time and can

protect data privacy and security.Apache hadoop is an open source software framework

written in java for distributed storage and distributed processing of very large datasets

on computer cluster. Usully Map Reduce designed for processing data of files. It is a

framework which we can write applicaton to process huge amount of data ,in parallel on

large cluster in rerliable manner.However, the slot-based Map Reduce system (e.g.,

Hadoop MRv1) can suffer from poor performance due to its un-optimized resource

allocation. To address it, this paper identifies and optimizes the resource allocation from

three key aspects. First, due to the pre-configuration of distinct map slots and reduce

slots which are not fungible, slots can be severely under-utilized. Because map slots may

be fully utilized while slots are empty and vice-versa. We propose alternative technique

called Dynamic Hadoop Slot Allocation by keeping slot based model.

Keywords: Map Reduce , DHSA , MRV2 , PostScheduling, PreScheduling Technique,post

Scheduling.

Article History

Received :28
th

 April 2016

Received in revised form :

30
th

 April 2016

Accepted : 2
nd

 May 2016

Published online :

4
th

 May 2016

I. INTRODUCTION

Hadoop is java based framework that allows to process large

data sets in distributed environment. Hadoop has been used

by many large scale companies like Amazon, Facebook, and

Yahoo[2]. Hadoop consist of two important

concepts:Hadoop Distributed File System (HDFS) and

Hadoop Map Reduce. Map Reduce workloads may be very

heterogeneous in terms of theirdata size and their re- source

requirements , and mixing them within a single instanceof a

computing framework may lead to conflicting optimization

goals. Therefore,isolating Map Reduce workloads and their

data while dynamically balancing theresources across them

is very attractive for many organizations .Hadoop is an

open source framework that allows to store and process big

data in a distributed environment across clusters of

computers using simple programming mode[5]l. It is

designedto scale up from single servers to thousands of

machines, each offering local computationand storage. Our

System relaxes the slot allocation constraint to allow slots

tobe reallocated to either map or reduce tasks depending on

their needs. Second, thespeculative execution can tackle the

straggler problem, which has shown to improvethe

performance for a single job but at the expense of the cluster

efficiency[4]. In viewof this, we propose Speculative

Execution Performance Balancing to balance

theperformance tradeoff between a single job and a batch of

jobs. Third, delay schedulinghas shown to improve the data

locality but at the cost of fairness. Alternatively,we propose

a technique called Slot PreScheduling that can improve the

data localitybut with no impact on fairness. Finally, by

combining these techniques together, weform a step-by-step

slot allocation system called Dynamic MR that can improve

theperformance of Map Reduce workloads substantially.

mailto:Neeta.mohite1@gmail.com

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 3 Page 856-859, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 2

II. BASIC CONCEPT

2.1 Map Reduce:

 Map Reduce is a processing technique and a program

model for distributed computing based on java. It contains

two important tasks, namely Map and Reduce. The major

advantages of MapReduce is that it is easy to scale data

processing over multiple computing nodes.

2.2 Hadoop Distributed File System(HDFS):

It is distributed file system designed to

run on commodity hardware. This system provides high-

throughput access to application data. HDFS is highly fault-

tolerant and is designed to be deployed on low-cost

hardware. Application that run on HDFS has large data

sets.[4] Typically file in HDFS is gigabytes to terabytes in

size. It should support tens of millions of files in a single

instance. HDFS is designed more for batch process in

grather than interactive use by users. Detection of faults and

quick, automatic recovery from them is a core goal of HDFS.

HDFS has been designed to e easily poratable from one

platform to another. HDFS has a Master-slave architecture

[6]. An HDFS cluster consist of a single NameNode, a

master serves that manages the file system namespaces and

regulates access to files by clients. In addition, there are

number of datanodes, usually one per node in the cluster,

which manage storage attached to the nodes that they run on.

III. BACKGROUND AND COMPARATIVE ANALYSIS

MR1 architecture, the cluster was managed by a service

called the Job Tracker. Task Tracker services lived on each

node and would launch tasks on behalf of jobs. The Job

Tracker would serve information about completed

jobs.[9]MRv1 uses the Job Tracker to create and assign

tasks to task trackers, which can become a resource

bottleneck when the cluster scales out far enough (usually

around 4,000 clusters).

3.1 Limitation:-

1)It limits scalability: Job Tracker runs on single machine

doing several task like

o Resource management

o Job and task scheduling and

o Monitoring

Although there are so many machines (Data Node) available;

they are not getting used. This limits scalability.

2) Availability Issue: In Hadoop 1.0, Job Tracker is single

Point of availability. This means if Job Tracker fails, all jobs

must restart.

3)Problem with Resource Utilization: In Hadoop 1.0,

there is concept of predefined number of map slots and

reduce slots for each Task Trackers. Resource Utilization

issues occur because maps slots might be ‘full’ while reduce

slots is empty (and vice-versa). Here the compute resources

(Data Node) could sit idle which are reserved for Reduce

slots even when there is immediate need for those resources

to be used as Mapper slots.

3.2 Map Reduce: Difference between MR1 and MR2:

Earlier version of map- reduce framework in Hadoop 1.0 is

called as MR1. The new version of Map Reduce is known

as MR2.

No more Job Tracker and Task Tracker needed in Hadoop 2.

With the introduction of YARN in Hadoop2, the term Job

Tracker and Task Tracker disappeared. Map Reduce is now

streamlined to perform processing data.

The new model is more isolated and scalable as compared to

the earlier MR1 system. MR2 is one kind of distributed

application that run Map Reduce framework on top of

YARN. Map Reduce perform data processing via YARN.

Other tools can also perform data processing via YARN.

Hence Yarn execution model is more generic than earlier

Map Reduce model.

MR1 was not able to do so. It would only run Map Reduce

applications

IV. PROPOSED SYSTEM

4.1 Slot prescheduling:-

It improves the slot utilization efficiency and performance

by improving the data locality for map tasks while keeping

the fairness. Step 1: Compute load factor

mapSlotsLoadFactor = Pending map tasks +running map

tasksfrom all jobs divided by the cluster map slot capacity.

Step 2: Compute current maximum number of usable map

slots = number o ofmap slots in a tasktracker *

minmapSlotsLoadFactor, 1. Step 3: Compute current

allowable idle map (or reduce) slots for a tasktracker=

maximum number of usable map slots - current number

ofused map (or reduce) slots.

4.2 Dynamic Hadoop Slot Allocation:-

It attempt to maximize slot utilization while maintainingthe

fairness, when there are pending tasks (e.g., map tasks

orreduce tasks). We break implicit assumption of

MapReducethat the maptasks can only run on map slots &

reduce taskscan only run on reduce slots. In our proposed

system wemodify it that map and reduce tasks can berun on

either mapor reduce slots. There are 3 cases, Consider, NM

= Total number of Map tasks NR = Total number of Reduce

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 3 Page 856-859, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 3

tasks SM = Total number of map slots SR = Total number

of reduce slots

Case 1: NM ≤ SMandNR ≤ SR The map tasks which are

running on map slots and reduce tasks are run on reduce

slots, There is no borrowing of map and reduce slots.

Case 2: NM>SMandNR<SR We satisfy reduce tasks for

reduce slots first and then use those idle reduce slots for

running map tasks.

 Case 3: NM<SMandNR>SR We can schedule those unused

map slots for running reducetasks. Case 4:

NM>SMandNR>SR The system should be in completely

busy state.

4.3 Delay time scheduler :

 Time threshold decide on hadoopnamenode

datanode configuration .

 After delay time data will be temporary stored on

pool and slot factorization will be done.

 Before delay time slot allocation will be occurred

by standard hadoop configuration

4.4 Features

 Stores large database at the same time it can

analyze the data using Map Reduce Algorithm.

 Hadoop processes data fast which is very useful for

Real Time System .

 Improves the performance of Map Reduce

workloads with maintaining the fairness.

 Balances the performance trade-off between a

single job & a batch of jobs dynamically.

 Slot pre-scheduling improves the efficiency of slot

utilization by further maximizing its data locality.

 SEPB identify the slot inefficiency problem of

speculative execution.

4.5 Application

 Providing Dynamic MR over Hadoop Framework

as a service to IT companies.

 Providing our software as a service to Government

System.

 Providing our system to any end-user or company

needing Hadoop on multi-node

cluster.

 Providing our software as a solution to any

company having big data handling issues

V. WORK FLOW

The admin login to system then upload to file.

First, we can classify the slots into two types, namely, busy

slots (i.e., with running tasks) and idle slots (i.e., no running

tasks). Given the total number of map and reduce slots

configured by users, one optimization approach (i.e., macro-

level optimization) is to improve the slot utilization by

maximizing the number of busy slots and reducing the

number of idle slots. Second, it is worth noting that not

every busy slot can be efficiently utilized. Thus, our

optimization approach (i.e., micro-level optimization) is to

improve the utilization efficiency of busy slots after the

macro level optimization. Particularly, we identify two main

affecting factors(1). Speculative tasks . (2). Data locality .

Based on these, we propose Dynamic MR, a dynamic

utilization optimization framework for Map Reduce, to

improve the performance of a shared Hadoop cluster under a

fair scheduling between users.

Fig5.1 Workflow of System

VI. RESULT

In This section we have shown the working of the proposed

system .the fig 6.1 shows the total files how to use Memory

load and fig 6.2 shows the total files how to use CPU load.

 Fig 6.1Memory load

Fig6.2 CPU Load

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 3 Page 856-859, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 4

VII. CONCLUSION

The aim of the proposed system is to improve the

performance of Map Reduce workloads. It considered three

techniques: Dynamic Hadoop Slot Allocation, Speculative

Execution Performance Balancing, and Slot Pre-Scheduling.

Dynamic Hadoop Slot Allocation uses allocation of map to

maximize the slot utilization and it reduces the task

dynamically. It does not require any prior information or

any assumption and it can be run on any kind of Map

reduce jobs. Speculative Execution Performance Balancing

identifies the slot inefficiency problem. It manages the

balance between single and batch of jobs dynamically. Slot

Pre-Scheduling are used to enhance the efficiency of slot

utilization by maximizing data locality. We can enhance the

utilization by adding above concept in traditional system. A

good trade-off betweendata utility and data consistency.

REFERENCE

[1]MapReduceTutorial ,http://hadoop.apache.org/docs/r1.2.

1/mapred tutorial:html

[2]F:Ahmad; S:Y:Lee; M:T hottethodi; T:N:v ijaykumar :P

UMA : Purdue Map Reduce Benchmarks Sui

[3]G:Ananthanarayanan; S:Kandula; A:Greenberg; I:Stoica;

Y:Lu; B:Saha; andE:Harris; Reininginth

[4]Apache HadoopNextGenMapReduce(Y ARN):http :

==hadoop:apache:org=docs=current=hadoop yarn=hadoop

yarn site=YARN:html:

[5]J:Chao; R:Buyya:MapReduceP rogramming Model

for :NET Based Cloud Com putting :In EuroP ar09; pp:417

428;2009:

[6]Q:Chen; C:Liu; Z:Xiao; Improving Map Reduce

Performance Using Smart Speculative Execution

[7]J:DeanandS:Ghemawat:MapReduce : Simplified Data

Processing on Large Clusters; In OSDI 04; pp 113; 2004:

[8]Z:H:Guo; G:F ox; M:Zhou;

Y:Ruan:ImprovingResourceUtilizationinMapReduce:InIEE

ECluster1410; 2012:

[9]Z:H:Guo; G:F ox;

andM:Zhou:InvestigationofdatalocalityandfairnessinMapRe

duce:InMapReduc 32; 2012:

[10]Z:H:Guo; G:F ox; and

M:Zhou:InvestigationofDataLocalityinMapReduce:InIEEE=

ACMCCGri 426; 2012:

[11]Hadoop:http : ==hadoop:apache:org:

[12]M:HammoudandM:F:Sakr:Locality Aware Reduce Task

Scheduling for Map Reduce :In IEEECL 576; 2011:

[13]M:Hammoud; M:S:Rehman; M:F:Sakr:Center of

Gravity Reduce Task Scheduling to Lower Map 58; 2012:

[14]H:Herodotou; H:Lim; G:Luo; N:Borisov; L:Dong;

F:B:Cetin; and S:Babu:Starfish :A Self

tuningSystemforBigDataAnalytics:InCIDR11; pp:261C 272;

2011:

[15]H:HerodotouandS:Babu; P rofiling; What if Analysis;

and Cost based Optimization of Map Reduce

[16]SIbrahim; HJin; LLu; BHe;

SWu:AdaptiveDiskI=OSchedulingforMapReduceinV

irtualizedEnv 344; 2011:

[17]Y:C:Kwon; M:Balazinska; B:Howe; andJ:Rolia:SkewT

une : mitigatingskewinmapreduceapplicat 36; 2012:

http://hadoop.apache.org/docs/r1.2.1/mapred
http://hadoop.apache.org/docs/r1.2.1/mapred
http://hadoop.apache.org/docs/r1.2.1/mapred

